Highlights from Making of the Atomic Bomb by Richard Rhodes
Highlights from this book
-
Here was no Faustian bargain, as movie directors and other naifs still find it intellectually challenging to imagine. Here was no evil machinery that the noble scientists might have hidden from the politicians and the generals. To the contrary, here was a new insight into how the world works, an energetic reaction, older than the earth, that science had finally devised the instruments and arrangements to coax forth
-
Knowledge,” Niels Bohr once noted, “is itself the basis for civilization.” You cannot have the one without the other; the one depends upon the other. Nor can you have only benevolent knowledge; the scientific method doesn’t filter for benevolence. Knowledge has consequences, not always intended, not always comfortable, not always welcome. The earth revolves around the sun, not the sun around the earth. “It is a profound and necessary truth,” Robert Oppenheimer would say, “that the deep things in science are not found because they are useful; they
-
Bohr proposed once that the goal of science is not universal truth. Rather, he argued, the modest but relentless goal
-
foundered on the certain calculus of escalation. “Every great and deep difficulty bears within itself its own solution,” Niels Bohr had counseled the scientists at Los Alamos whose consciences he found stirred when he arrived there in 1943.
-
The discovery of how to release nuclear energy, like all fundamental scientific discoveries, changed the structure of human affairs—permanently.
-
It is still an unending source of surprise for me to see how a few scribbles on a blackboard or on a sheet of paper could change the course of human affairs. Stanislaw Ulam
-
Max Planck thought otherwise. He doubted that atoms existed at all, as did many of his colleagues—the particulate theory of matter was an English invention more than a Continental, and its faintly Britannic odor made it repulsive to the xenophobic German nose—but if atoms did exist he was sure they could not be mechanical. “It is of paramount importance,” he confessed in his Scientific Autobiography, “that the outside world is something independent from man, something absolute, and the quest for laws which apply to this absolute appeared to me as the most sublime scientific pursuit in life.” Of all the laws of physics, Planck believed that the thermodynamic laws applied most basically to the independent “outside world” that his need for an absolute required.88 He saw early that purely mechanical atoms violated the second law of thermodynamics. His choice was clear.
-
orthodoxy of science. They acquired “the established doctrine, the dead letter.” Some, at university, went on to study the beginnings of method.96 They practiced experimental proof in routine research. They discovered science’s “uncertainties and its eternally provisional nature.” That began to bring it to life.
-
are; all we are allowed to do is to watch the playing. Of course, if we watch long enough, we may eventually catch on to a few of the rules. The rules of the game are what we mean by fundamental physics. Even if we know every rule, however . . . what we really can explain in terms of those rules is very limited, because almost all situations are so enormously complicated that we cannot follow the plays of the game using the rules, much less tell what is going to happen next. We must, therefore, limit ourselves
-
Good science, original work, always went beyond the body of received opinion, always represented a dissent from orthodoxy. How, then, could the orthodox fairly assess it? Polanyi suspected that science’s system of masters and apprentices protected it from rigidity. The apprentice learned high standards of judgment from his master. At the same time he learned to trust his own judgment: he learned the possibility and the necessity of dissent.
-
“His leading idea was that the different possible conceptions of life are so sharply opposed to one another that we must make a choice between them, hence his catchword either-or; moreover, it must be a choice which each particular person must make for himself, hence his second catchword, the individual.”
-
“Bohr characteristically avoids such a word as ‘principle,’ ” says Rosenfeld; “he prefers to speak of ‘point of view’ or, better still, ‘argument,’ i.e. line of reasoning; likewise, he rarely mentions the ‘laws of nature,’ but
-
Much of the difficulty was language, that slippery medium in which Bohr saw us inextricably suspended. “It is wrong,” he told his colleagues repeatedly, “to think that the task of physics is to find out how nature is”—which is the territory classical physics had claimed for itself. “Physics concerns what we can say about nature.”
-
The machine gun mechanized war. Artillery and gas mechanized war. They were the hardware of the war, the tools. But they were only proximately the mechanism of the slaughter. The ultimate mechanism was a method of organization—anachronistically speaking, a software package.376 “The basic lever,” the writer Gil Elliot comments, “was the conscription law, which made vast numbers of men available for military service.377 The civil machinery which ensured the carrying out of this law, and the military organization which turned numbers of men into battalions and divisions, were each founded on a bureaucracy. The production of resources, in particular guns and ammunition, was a matter for civil organization. The movement of men and resources to the front, and the trench system of defence, were military concerns.”
-
Oppenheimer was no longer a frightened boy, but he was still an insecure and uncertain young man. He sorted among information, knowledge, eras, systems, languages, arcane and apposite skills in the spirit of trying them on for size. Exaggeration made it clear that he knew you knew how awkwardly they fit (and self-destructively at the same time supplied the awkwardness). That was perhaps its social function. Deeper was worse. Deeper was self-loathing, “a very great sense of revulsion and of wrong.” Nothing was yet his, nothing was original, and what he had appropriated through learning he thought stolen and himself a thief: a Goth looting Rome. He loved the loot but despised the looter. He was as clear as Harry Moseley was clear in his last will about
-
Working late one evening in his room under the eaves of Bohr’s institute Heisenberg remembered a paradox Einstein had thrown at him in a conversation about the value of theory in scientific work. “It
-
I believe that through discipline we can learn to preserve what is essential to our happiness in more and more adverse circumstances, and to abandon with simplicity what would else have seemed to us indispensable; that we come a little to see the world without the gross distortion of personal desire, and in seeing it so, accept more easily our earthly privation and its earthly horror—
-
Were this thinking not in the framework of scientific work, it would be considered paranoid. In scientific work, creative thinking demands seeing things not seen previously, or in ways not previously imagined; and this necessitates jumping off from “normal” positions, and taking risks by departing from reality. The difference between the thinking of the paranoid patient and the scientist comes from the latter’s ability and willingness to test out his fantasies or grandiose conceptualizations through the systems of checks and balances science has established—and to give up those schemes that are shown not to be valid on the basis of these scientific checks. It is specifically because science provides such a framework of rules and regulations to control and set bounds to paranoid thinking that a scientist can feel comfortable about taking the paranoid leaps. Without this structuring, the threat of such unrealistic, illogical, and even bizarre thinking to overall thought and personality organization in general would be too great to permit the scientist the freedom of such fantasying.
-
“I believe all young people think about how they would like their lives to develop,” Lise Meitner wrote in old age, looking back; “when I did so I always arrived at the conclusion that life need not be easy provided only that it was not empty. And this wish I have been granted.”
-
“How much money do you need?” Commander Hoover wanted to know.1237 Szilard had not planned to ask for money. “The diversion of Government funds for such purposes as ours appears to be hardly possible,” he explained to Pegram the next day, “and I have therefore myself avoided to make any such recommendation.”1238 But Teller answered Hoover promptly, probably speaking for Fermi: “For the first year of this research we need six thousand dollars, mostly in order to buy the graphite.” (“My friends blamed me because the great enterprise of nuclear energy was to start with such a pittance,” Teller reminisces; “they haven’t forgiven me yet.”1239 Szilard, who would write Briggs on October 26 that the graphite alone for a largescale experiment would cost at least $33,000, must have been appalled.1240) Adamson had anticipated just such a raid on the public treasury. “At this point,” says Szilard, “the representative of the Army started a rather longish tirade”: He told us that it was naive to believe that we could make a significant contribution to defense by creating a new weapon. He said that if a new weapon is created, it usually takes two wars before one can know whether the weapon is any good or not. Then he explained rather laboriously that it is in the end not weapons which win the wars, but the morale of the troops. He went on in this vein for a long time until suddenly Wigner, the most polite of us, interrupted him. [Wigner] said in his high-pitched voice that it was very interesting for him to hear this. He always thought that weapons were very important and that this is what costs money, and this is why the Army needs such a large appropriation. But he was very interested to hear that he was wrong: it’s not weapons but the morale which wins the wars. And if this is correct, perhaps one should take a second look at the budget of the Army, and maybe the budget could be cut.
-
The senior men turned their collective brilliance to fusion. They had not yet bothered to name generic bombs of uranium and plutonium. But from the pre-anthropic darkness where ideas abide in nonexistence until minds imagine them into the light, the new bomb emerged already chased with the technocratic euphemism of art deco slang: the Super, they named it.
-
“Decisions are often clearly recognized as mistakes at the time when they are made by those who are competent to judge, but . . . there is no mechanism by which their collective views would find expression or become a matter of record.”
-
Since invention is unpredictable, Szilard writes, “the only thing we can do in order to play safe is to encourage sufficiently large groups of scientists to think along those lines and to give them all the basic facts which they need to be encouraged to such activity.
-
Bohr, who used to say that accuracy and clarity were complementary (and so a short statement could never be precise),
-
Nations existed in a condition of international anarchy. No hierarchical authority defined their relations with one another. They negotiated voluntarily as self-interest moved them and took what they could get. War had been their final negotiation,
-
Nuclear fission and thermonuclear fusion are not acts of Parliament; they are levers embedded deeply in the physical world, discovered because it was possible to discover them, beyond the power of men to patent or to hoard.
-
The technological imperative, the urge to improvement even if the objects to be improved are weapons of mass destruction, was already operating at Los Alamos. Under intense pressure to produce a first crude weapon in time to affect the outcome of the war, people had found occasion nevertheless to think about building a better bomb.
-
Robert Oppenheimer at his best: When, three days ago, the world had word of the death of President Roosevelt, many wept who are unaccustomed to tears, many men and women, little enough accustomed to prayer, prayed to God.2269 Many of us looked with deep trouble to the future; many of us felt less certain that our works would be to a good end; all of us were reminded of how precious a thing human greatness is.
-
I see that as human beings we have two great ecstatic impulses in us. One is to participate in life, which ends in the giving of life. The other is to avoid death, which ends tragically in the giving of death. Life and death are in our gift, we can activate life and activate death. Gil Elliot
-
“The chief lesson I have learned in a long life,” he wrote at the end of his career, “is that the only way you can make a man trustworthy is to trust him; and the surest way to make him untrustworthy